1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么(向量可以平移)。如:
2.零向量:长度为0的向量叫零向量,记作:
overrightarrow{0}
0
注意零向量的方向是任意的
3.单位向量:长度为一个单位长度的向量叫做单位向量(与
overrightarrow{AB}
AB
共线的单位向量
平面向量知识点归纳
一、两个定理
1、共线向量定理:
两向量共线(平行)等价于两个向量满足数乘关系(与实数相乘的向量不是零向量),且数乘系数唯一。用坐标形式表示就是两向量共线则两向量坐标的“内积等于外积”。此定理可以用来证向量平行或者使用向两平行的条件。此定理的延伸是三点共线!
三点共线可以向两个向量的等式转化:1. 三个点中任意找两组点构成的两个向量共线,满足数乘关系
2、 以同一个点为始点、三个点为终点构造三个向量,其中一个可由另外两个线性表示,且系数和为1。
2、平面向量基本定理:
平面内两个不共线的向量可以线性表示任何一个向量,且系数唯一。这两个不共线的向量构成一组基底,这两个向量叫基向量。
此定理的作用有两个:
1、 可以统一题目中向量的形式
2、 可以利用系数的唯一性求向量的系数(固定的算法模式)。
二、三种形式
平面向量有三种形式,字母形式、几何形式、坐标形式。字母形式要注意带箭头,多考虑几何形式画图解题,特别是能得到特殊的三角形和四边形的情况,向量的坐标和点的坐标不要混淆,向量的坐标是其终点坐标减始点坐标,特殊情况下,若始点在原点,则向量的坐标就是终点坐标。
选择合适的向量形式解决问题是解题的一个关键,优先考虑用几何形式画图做,然后是坐标形式,最后考虑字母形式的变形运算。
三、四种运算
加、减、数乘、数量积。前三种运算是线性运算,结果是向量(0乘以任何向量结果都是零向量,零向量乘以任何实数都是零向量)数量积不是线性运算,结果是实数(零向量乘以任何向量都是0)。线性运算符合所有的实数运算律,数量积不符合消去律和结合律。
向量运算也有三种形式:字母形式、几何形式和坐标形式。
加减法的字母形式注意首尾相接和始点重合。数量积的字母形式公式很重要,要能熟练灵活的使用。
加减法的几何意义是平行四边形和三角形法则,数乘的几何意义是长度的伸缩和方向的共线,数量积的几何意义是一个向量的模乘以另一个向量在第一个向量方向上的射影的数量。向量的夹角用尖括号表示,是两向量始点重合或者终点重合时形成的角,首尾相接形成的角为向量夹角的补角。
射影数量有两种求法:1. 向量的模乘以夹角余弦2. 两向量数量积除以另一向量的模。
加减法的坐标形式是横纵坐标分别加减,数乘的坐标形式是实数乘以横、纵坐标,数量积的坐标形式是横坐标的乘积加纵坐标的乘积。
四、五个应用
求长度、求夹角、证垂直、证平行、向量和差积的模与模的和差积的关系。前三个应用是数量积的运算性质,证平行的数乘运算性质,零向量不能说和哪个向量方向相同或相反,规定零向量和任意向量都平行且都垂直一个向量乘以自己再开方就是长度两个向量数量积除以模的乘积就是夹角的余弦两个向量满足数乘关系则必定共线(平行)。一个向量除以自己的模得到和自己同方向的单位向量,加符号是反方向的单位向量。
平面向量知识点归纳的相关内容
平面公式什么意思
在空间中,到两点距离相同的点的轨迹。在 中,平面公式为A*(x-x0)+B*(y-y0)+C*(z-z0)=0,其定义为与固定点(x0,y0,z0)的连线垂直于固定方向(A,B,C)的所有的点的集合。这两种定义在数学上是一致的。
平面表示方法:(1)用希腊字母α、β、γ写在一个角上。如平面α、平面β。(2)用四个顶点的字母或者对角线的字母。如平面ABCD、平面AC。
平面是什么意思
平面,是指面上任意两点的连线整个落在此面上,一种二维零曲率广延,这样一种面,它与同它相似的面的任何交线是一条直线。
是由显示生活中(例如镜面、平静的水面等)的实物抽象出来的数学概念,但又与这些实物有根本的区别,既具有无限延展性(也就是说平面没有边界),又没有大小、宽窄、薄厚之分,平面的这种性质与直线的无限延展性又是相通的。
平面是什么意思
指没有高低曲折的面。数学上称最简单的面,即在相交的两直线上各取一动点,并用直线连接起来,所有这些直线构成一平面。现亦常用于比喻。
平面六角形画法公式
正六边形的画法有以下3种:
(1)方法一:作圆,以半径为长度单位(半径即是所求正六边形边长),划分圆,并连接各分点,即是所求正六边形。
(2)方法二:以任意长画一条线段AB。以A为圆心,AB为半径,作圆A。以B为圆心,AB为半径,作圆B与圆A交于点C。连接AC,BC。三角形ABC为等边三角形。在AB上取三等分点M。在AC和BC上分别取点N,O,使CN=AM=OB。作MX平行于BC,交AC于点X。作NY平行于BA,交BC于点Y。作OZ平行于AC,交AB于点Z。则NYOZMX为正六边形。
(3)方法三:画一个圆,做其一条直径。以直径的两个端点为圆心,以已做…
由什么组成的集合叫做平面点集
由平面内的点组成的集合叫做平面点集由数组成的集合叫做数集方程的解集与不等式的解集都是数集所有自然数组成的集合叫做自然数集,记作 所有正数。像平面上与点O的距离为2 cm的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集.
平面点位放样坐标怎么得到
第一,任务发布者给,要放出哪个点,肯定给出坐标。
第二,计算得出,根据图纸标注尺寸。根据和其他已知坐标点的相对位置得出。
第三,自己设计。
第四,在电子图上,使用工具测量一下或者标注。可以使用坐标标注的方法直接获取点位坐标,可以使用测量工具,进行坐标推算。
第五,要是那种特殊图形的放样。需要进行数学计算或者CAD标注。