计算过程如下:
向量a-向量b的模
=|向量a-向量b|
=根号下(向量a-向量b)²
=根号下(|a|²+|b|²-2|a||b|cosα)
其中:cosα是向量a和向量b的夹角。
而“|a|、|b|”代表的就是向量a、b的模,即为向量的大小
注:
1、向量是一个有方向的线段,向量的模就相当于这条线段的长度
2、向量的模是非负实数,即向量的模是一个数,是一个可以比较大小的数
3、向量本身是一个包含方向的数,所以向量本身不能比较大小。
扩展资料:
向量:
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。
向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的性质:
向量的模的运算没有专门的法则,一般都是通过余弦定理计算两个向量的和、差的模。
多个向量的合成用正交分解法,如果要求模一般需要先算出合成后的向量。
模是绝对值在二维和三维空间的推广,可以认为就是向量的长度。推广到高维空间中称为范数。
a向量减b向量的模的取值范围
因为|a|-|b|=|a-b| 所以(|a|-|b|)^2=|a-b|^2 |a|^2-2|a||b|+b^2=|a-b|^
2 由公式可推出|A|^2=AA 所以上式等价于 aa-2|a||b|+bb=(a-b)(a-b) aa-2|a||b|+bb=aa-2ab+bb |a||b|=ab 又因为ab=|a||b|cos(a,b) 所以cos(a,b)=1 (a,b)=0 所以a平行于b 所以b=λa a+b=a+λa=(1+λ)a a(a+b)=1+λ 1+λ为常数 所以a平行于(a+b) 又因为(a,b)=0 即ab同向 根据向量加法三角形法则,a与a+b同向 所以(a,a+b)=0
a向量减b向量的模的取值范围的相关内容
a向量减b向量的模的取值范围
计算过程如下:
向量a-向量b的模
=|向量a-向量b|
=根号下(向量a-向量b)²
=根号下(|a|²+|b|²-2|a||b|cosα)
其中:cosα是向量a和向量b的夹角。
而“|a|、|b|”代表的就是向量a、b的模,即为向量的大小
注:
1、向量是一个有方向的线段,向量的模就相当于这条线段的长度
2、向量的模是非负实数,即向量的模是一个数,是一个可以比较大小的数
3、向量本身是一个包含方向的数,所以向量本身不能比较大小。
扩展资料:
…空间向量夹角问题难不难
应该不难。这也是在高中阶段引入空间向量原因,空间几何三类角在引入空间向量后,运用夹角公式就可以解决。用向量解决空间几何问题关键在于建立恰当坐标系。最容易犯错的是写点坐标,尤其是不在坐标系及坐标面上点。由坐标可写出直线方向向量,及平面法向量。最后运用公式求解得出结论
a向量+b向量的模等于1
向量a+向量b的模=|向量a+向量b| =根号下(向量a+向量b)² =根号下(|a|²+|b|²+2|a||b|cosα) 其中:cosα是向量a和向量b的夹角。 向量的大小,也就是向量的长度(或称模)。
数学中的复数的模,又称向量的模。将复数的实部与虚部的平方和的正的平方根的值称为该复数的模。复数的模运算规则如下:设复数z=a+bi(a,b∈R)。则复数z的模|z|=√a^2+b^2它的几何意义是复平面上一点(a,b)到原点的距离。2.在线性代数、泛函分析及相关的数学领域,模是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。 函数的模的运算规则如下:取模运算符“…
向量的夹角是首首还是尾尾相连
向量夹角应是首首相连。向量a与b夹角定义是,任取一点O,作OA∥a,OB∥b,那么<AOB就是向量a与向量b的夹角。其取值范围为[O,兀)。至于向量尾尾相连所形成的角与向量夹角是对顶角,其大小相等。例如在△ABC中向量AB与向量AC夹角是<A,向量AB与向量BC夹角为<B补角,向量AC与向量BC夹角等于<C。
向量内积有负值吗
内积也就是数量积,是一个数,当然有正负之分了,由公式可知符号来自cosθ,是钝角时就是负值向量内积就是 对应的量相乘 然后相加求和:
向量A = (x, y) 或者 (x, y, z)
向量B = (M, N) 或者 (M, N, H)
向量A、B内积 A •B = xM + YN ①
或者 A• B = |A| * |B| * cosθ ②
从①、②可以看出,向量内积 可正可负的,特别地还可以为零表示垂直。
向量内积有负值吗
可以当两向量夹角大于90度时得到的数量积为负数→→→→→→a·b=|a||b|…